Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analytical and numerical studies of p+-emitters in silicon carbide bipolar devices

Identifieur interne : 000087 ( Russie/Analysis ); précédent : 000086; suivant : 000088

Analytical and numerical studies of p+-emitters in silicon carbide bipolar devices

Auteurs : RBID : Pascal:11-0242618

Descripteurs français

English descriptors

Abstract

In this paper, ways to create silicon carbide p+-emitters with high injection coefficients are considered. Raising the emitter doping level, eliminating the deteriorated layer, and making longer the electron lifetime in the emitter are discussed and analyzed. The efficiency criteria are established for SiC emitters by comparing Si and SiC p+-n junctions. It is shown that the properties of modern SiC p+-emitters are far from being optimal. Analytical models have been developed to describe the properties of SiC p+-n junctions in terms of the well-known 'saturation current' (jsn) approach, which takes into account the main nonlinear effects that govern the transport phenomena in highly doped emitter layers: bandgap narrowing, Auger recombination, electron-hole scattering, radiative recombination, and surface recombination. It is demonstrated that the value of jsn for the SiC p+-n junction may be as small as ∼2 x 10-49 A cm-2, i.e. two orders of magnitude smaller than the smallest values of jsn in modern SiC bipolar devices. The dependences of jsn on the electron lifetime and doping level in the emitter are analyzed. It is shown that the electron lifetime in the p+-emitter layer has a vigorous effect on the device forward voltage. The analytical results are confirmed by the data furnished by numerical experiments.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0242618

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Analytical and numerical studies of p
<sup>+</sup>
-emitters in silicon carbide bipolar devices</title>
<author>
<name sortKey="Levinshtein, M E" uniqKey="Levinshtein M">M. E. Levinshtein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>The Ioffe Physico-Technical Institute, Politekhnicheskaya 26</s1>
<s2>194021 St Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>194021 St Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mnatsakanov, T T" uniqKey="Mnatsakanov T">T. T. Mnatsakanov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Electrotechnical Institute, Krasnokazarmennaya 12</s1>
<s2>111250 Moscow</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Agarwal, A K" uniqKey="Agarwal A">A. K. Agarwal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Cree Inc., 4600 Silicon Dr</s1>
<s2>Durham, NC 27703</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Durham, NC 27703</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Palmour, J W" uniqKey="Palmour J">J. W. Palmour</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Cree Inc., 4600 Silicon Dr</s1>
<s2>Durham, NC 27703</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Durham, NC 27703</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0242618</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0242618 INIST</idno>
<idno type="RBID">Pascal:11-0242618</idno>
<idno type="wicri:Area/Main/Corpus">003119</idno>
<idno type="wicri:Area/Main/Repository">003422</idno>
<idno type="wicri:Area/Russie/Extraction">000087</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analytical method</term>
<term>Auger recombination</term>
<term>Carrier lifetime</term>
<term>Digital simulation</term>
<term>Doping</term>
<term>Electron-hole recombination</term>
<term>Energy gap</term>
<term>Indium additions</term>
<term>Non linear effect</term>
<term>Radiative recombination</term>
<term>Silicon carbide</term>
<term>Surface recombination</term>
<term>Transmitters</term>
<term>Transport processes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Simulation numérique</term>
<term>Dopage</term>
<term>Phénomène transport</term>
<term>Méthode analytique</term>
<term>Effet non linéaire</term>
<term>Bande interdite</term>
<term>Recombinaison Auger</term>
<term>Recombinaison électron trou</term>
<term>Durée vie porteur charge</term>
<term>Recombinaison radiative</term>
<term>Recombinaison superficielle</term>
<term>Addition indium</term>
<term>Emetteur</term>
<term>Carbure de silicium</term>
<term>SiC</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, ways to create silicon carbide p
<sup>+</sup>
-emitters with high injection coefficients are considered. Raising the emitter doping level, eliminating the deteriorated layer, and making longer the electron lifetime in the emitter are discussed and analyzed. The efficiency criteria are established for SiC emitters by comparing Si and SiC p
<sup>+</sup>
-n junctions. It is shown that the properties of modern SiC p
<sup>+</sup>
-emitters are far from being optimal. Analytical models have been developed to describe the properties of SiC p
<sup>+</sup>
-n junctions in terms of the well-known 'saturation current' (j
<sub>sn</sub>
) approach, which takes into account the main nonlinear effects that govern the transport phenomena in highly doped emitter layers: bandgap narrowing, Auger recombination, electron-hole scattering, radiative recombination, and surface recombination. It is demonstrated that the value of j
<sub>sn</sub>
for the SiC p
<sup>+</sup>
-n junction may be as small as ∼2 x 10
<sup>-49</sup>
A cm
<sup>-2</sup>
, i.e. two orders of magnitude smaller than the smallest values of j
<sub>sn</sub>
in modern SiC bipolar devices. The dependences of j
<sub>sn</sub>
on the electron lifetime and doping level in the emitter are analyzed. It is shown that the electron lifetime in the p
<sup>+</sup>
-emitter layer has a vigorous effect on the device forward voltage. The analytical results are confirmed by the data furnished by numerical experiments.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>26</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Analytical and numerical studies of p
<sup>+</sup>
-emitters in silicon carbide bipolar devices</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LEVINSHTEIN (M. E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MNATSAKANOV (T. T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>AGARWAL (A. K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PALMOUR (J. W.)</s1>
</fA11>
<fA14 i1="01">
<s1>The Ioffe Physico-Technical Institute, Politekhnicheskaya 26</s1>
<s2>194021 St Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Electrotechnical Institute, Krasnokazarmennaya 12</s1>
<s2>111250 Moscow</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Cree Inc., 4600 Silicon Dr</s1>
<s2>Durham, NC 27703</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>055024.1-055024.8</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000192080330240</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>46 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0242618</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, ways to create silicon carbide p
<sup>+</sup>
-emitters with high injection coefficients are considered. Raising the emitter doping level, eliminating the deteriorated layer, and making longer the electron lifetime in the emitter are discussed and analyzed. The efficiency criteria are established for SiC emitters by comparing Si and SiC p
<sup>+</sup>
-n junctions. It is shown that the properties of modern SiC p
<sup>+</sup>
-emitters are far from being optimal. Analytical models have been developed to describe the properties of SiC p
<sup>+</sup>
-n junctions in terms of the well-known 'saturation current' (j
<sub>sn</sub>
) approach, which takes into account the main nonlinear effects that govern the transport phenomena in highly doped emitter layers: bandgap narrowing, Auger recombination, electron-hole scattering, radiative recombination, and surface recombination. It is demonstrated that the value of j
<sub>sn</sub>
for the SiC p
<sup>+</sup>
-n junction may be as small as ∼2 x 10
<sup>-49</sup>
A cm
<sup>-2</sup>
, i.e. two orders of magnitude smaller than the smallest values of j
<sub>sn</sub>
in modern SiC bipolar devices. The dependences of j
<sub>sn</sub>
on the electron lifetime and doping level in the emitter are analyzed. It is shown that the electron lifetime in the p
<sup>+</sup>
-emitter layer has a vigorous effect on the device forward voltage. The analytical results are confirmed by the data furnished by numerical experiments.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70B20J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Phénomène transport</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Transport processes</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode analytique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Analytical method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método analítico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Recombinaison Auger</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Auger recombination</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Recombinación Auger</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Recombinaison électron trou</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Electron-hole recombination</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Durée vie porteur charge</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Carrier lifetime</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Recombinaison radiative</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Radiative recombination</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Recombinación radiativa</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Recombinaison superficielle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Surface recombination</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Emetteur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Transmitters</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Carbure de silicium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Silicon carbide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Silicio carburo</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>SiC</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>164</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000087 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000087 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0242618
   |texte=   Analytical and numerical studies of p+-emitters in silicon carbide bipolar devices
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024